Abstract
Offshore drilling platforms are exposed to wind, waves, currents, and other unknown disturbances. Accurately estimating and rejecting these disturbances is the key to ensuring reliable station-keeping of the platforms. In this study, a novel dynamic positioning method using an improved equivalent-input-disturbance (EID) approach is proposed for offshore drilling platforms. An improved EID estimator is employed to estimate and suppress unknown disturbances, significantly enhancing the disturbance-rejection performance of the dynamic positioning system. The input channels are decoupled through linear transformation, and the parameter tuning process of the observer and controller is optimized, thus improving system performance. The bounded-input bounded-output stability of the closed-loop system is proved. This study provides insights into the design of dynamic positioning systems for offshore drilling platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.