Abstract

This paper focuses on the problem of disturbance rejection for a class of interval type-2 (IT-2) fuzzy systems via equivalence-input-disturbance (EID)-based approach. The main objective of this work is to design a fuzzy state-feedback controller combined with a disturbance estimator such that the output of the fuzzy system perfectly tracks the given reference signal without steady-state error and produces an EID to eliminate the influence of the actual disturbances. By constructing a suitable Lyapunov function and using linear matrix inequality (LMI) technique, a new set of sufficient conditions is established in terms of linear matrix inequalities for the existence of fuzzy controller. Finally, a simple pendulum model is considered to illustrate the effectiveness and applicability of the proposed EID-based control design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.