Abstract
The disturbance rejection approach is employed for the stabilization of fractional-order neural networks described by Takagi-Sugeno fuzzy model with dynamic output feedback controller under quantization. First, an equivalent continuous frequency distributed integral-order system is formulated for the fractional-order neural networks to estimate the system state. Specifically, the dynamic output feedback control with quantization is proposed and the measurement output is quantized by logarithmic quantizer before transmission. By employing an indirect Lyapunov approach and equivalent input disturbance (EID) technique, a set of newly established sufficient conditions with corresponding quantizer’s dynamic parameters is obtained in the shape of LMIs to ensure the asymptotical stability of the considered fractional-order system. Finally, the validity of the considered design method is illustrated through a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.