Abstract

Disturbance regimes are ecologically important, but many of their evolutionary consequences are poorly understood. A model is developed here that combines the within- and among-season dynamics of disturbances with evolutionary life-history theory. "Disturbance regime" is defined in terms of disturbance timing, frequency, predictability, and severity. The model predicts the optimal body size and time at which organisms should abandon a disturbance-prone growth habitat by maturing and moving to a disturbance-free, nongrowth habitat. The effects of both coarse-grained (those affecting the entire population synchronously) and fine-grained disturbances (those occurring in a patch dynamics setting) are explored. Several predictions are congruent with previous theory. Infrequent or temporally unpredictable disturbances should have little effect on the evolution of life-history strategies, even though they may cause high mortality. Similar to seasonal time constraints on reproduction, disturbance regimes can synchronize metamorphosis within a population, resulting in a seasonal decline in body size at maturity. Other model predictions are novel. When disturbances cause high mortality, coarse-grained disturbances have a much stronger effect on life-history strategies than fine-grained disturbances, suggesting that population structure (relative to the scale of disturbance) plays a critical evolutionary role when disturbances are severe. When within-population variance in juvenile body size is high, two consecutive seasonal declines in body size at maturity can occur, the first associated with disturbance regime and the second associated with seasonal time constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call