Abstract

Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by impairments of reciprocal social interaction and restricted stereotyped repetitive behavior. The goal of the present study was to investigate the trace element and gut microbiota profiles of Chinese autistic children and screen out potential metallic or microbial indicators of the disease. One hundred and thirty-six children (78 with ASD and 58 healthy controls) aged from 3 to 7 years were enrolled. The levels of lead, cadmium, arsenic, copper, zinc, iron, mercury, calcium and magnesium in hair samples from the children were analyzed. Fecal samples were also collected and the children’s gut microbiota profiles were characterized by 16s rRNA sequencing. Concentrations of lead, arsenic, copper, zinc, mercury, calcium and magnesium were significantly higher in the ASD group than in the control group. Linear discriminant analysis effect size analysis indicated that the relative abundance of nine genera was increased in the autistic children. Redundancy analysis showed that arsenic and mercury were significantly associated with Parabacteroides and Oscillospira in the gut. A random forest model was trained with high accuracy (84.00%) and the metallic and microbial biomarkers of ASD were established. Our results indicate significant alterations in the trace element and gut microbiota profiles of Chinese children with ASD and reveal the potential pathogenesis of this disease in terms of metal metabolism and gut microecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.