Abstract

To compensate for the nonlinear effects of nanopositioning stages and their model uncertainties, several control methods have been developed and reported in the literature. One promising method for compensation is the use of a proportional-integral-derivative (PID)-based sliding-mode control (SMC), in which the nonlinear effects are treated as an unknown disturbance to the system. If the nonlinearity and the model uncertainties can be completely or partially estimated, integration of their estimations into the control schemes may lead to improved performance. On this basis, this paper presents the development of a disturbance-observer-based (DOB) SMC, in which the nonlinearity of the nanopositioning stage is partially predicted through the use of an observer and then compensated by the PID-based SMC. Experiments were performed to verify the effectiveness of the proposed control schemes, and the results showed that the performance of the nanopositioning stage by employing the DOB-SMC was greatly improved, as compared to the PID-based SMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.