Abstract
This paper proposes an adaptive controller for the trajectory tracking of a nonholonomic wheeled mobile robot with nonholonomic constraints in the presence of external disturbances and unknown parameters. A new scheme is proposed to design an adaptive virtual velocity controller and torque control law. Meanwhile, a disturbance observer is applied to estimate the lumped disturbance to achieve the feedforward compensation. Simulation results demonstrate the effectiveness of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.