Abstract

Hybrid VTOL UAVs such as tail-sitters allow several key maneuvers such as vertical takeoff, landing, and hovering while at the same time maintaining superior aerodynamic efficiency at level flight. However, the large wing area of a tail-sitter at hovering makes it rather sensitive to the cross wind. In this letter, we present a disturbance observer (DOB) based control method to improve its hovering accuracy in presence of external disturbances such as cross wind. The presented DOB, operating on top of the aircraft baseline position controller, is designed in frequency domain using H ∞ synthesis techniques and is guaranteed to stabilize the closed loop system with robustness to model uncertainties. In addition, it admits nonminimum phase system model, as the case of our tail-sitter platform, and does not require much hand tuning work on the Q-filter. Comparison study with existing UAV disturbance rejection method is conducted under different wind disturbances. Results show that the presented DOB control technique can effectively estimate various types of wind disturbances and lead to improved hovering accuracy of the tail-sitter UAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.