Abstract

In this paper, a fixed-time sliding mode control scheme is developed to fulfill the trajectory tracking task of a marine surface vehicle with unknown dynamics. To restrain the adverse effects of the unknown dynamics including the parameter inaccuracy and exogenous disturbances, a fixed-time disturbance observer is designed to estimate the lumped uncertainties using the bi-limit homogeneous theory without requiring any knowledge of the model uncertainties. Then, a nominal tracking controller is proposed to stabilize the error dynamic model in the sense of fixed-time Lyapunov stability, based on which a novel integral-type sliding mode manifold with bi-limit homogeneity is constructed to drive tracking error convergence in fixed time. To enhance the robustness of the vessel control system, a disturbance observer–based fixed-time integral sliding mode tracking controller is finally proposed, and the chattering phenomenon is effectively alleviated by direct estimation compensations. The analysis of Lyapunov stability indicates that the closed-loop system is fixed-time stable. Numerical simulations on a model vessel are carried out to validate theoretical results of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call