Abstract

This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call