Abstract
This article presents the flight control problem of a flexible air-breathing hypersonic vehicle under input constraint and aerodynamic uncertainty. First, a control-oriented model is derived and decomposed into velocity subsystem and altitude subsystem, in which compounded disturbances are included to consider aerodynamic uncertainty and the effect of the flexible modes. Second, nonlinear disturbance observer technique is employed to estimate the compounded disturbance, where the estimation error converges to a compact set if the observer design parameters are chosen appropriately. Then, based on disturbance observer, a robust controller and a dynamic surface controller are developed, respectively, for the velocity subsystem and the altitude subsystem. Third, novel robust first-order filters are designed to overcome the “explosion of terms” problem induced by backstepping method. Additional systems are constructed to tackle input constraints. By rigorously Lyapunov stability proof, the designed control strategy can assure that tracking error converges to an arbitrarily small neighborhood around zero. Finally, simulations are performed to show the effectiveness of the presented control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.