Abstract
This paper presents an adaptive model predictive control (MPC) method based on disturbance observer (DOB) to improve the disturbance rejection performance of the image-based visual servoing (IBVS) system. The proposed control method is developed based on the depth-independent interaction matrix, which can simultaneously handle unknown camera intrinsic and extrinsic parameters, unknown depth parameters, system constraints, as well as external disturbances. The proposed control scheme includes two parts which are the feedback regulation part based on the adaptive MPC and the feedforward compensation part based on the modified DOB. Unlike the traditional DOB that is based on the fixed nominal plant model, the modified DOB here is based on the estimated plant model. The adaptive MPC controller consists of an iterative identification algorithm, which not only can provide the model parameters for both the controller and the modified DOB, but also can be used to control plant dynamics and to minimize the effects of DOB. Simulations for both the eye-in-hand and eye-to-hand camera configurations are conducted to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.