Abstract

This article studies the adaptive control about the geodetic fixed positions and heading of three-degree-of-freedom dual-propeller vessel. During the navigation of a vessel at sea, due to the unpredictable sea, on the one hand, it is important to ensure that the vessel can smoothly follow the desired geodesic fixed position and heading; on the other hand, when the sailing environment is harsh, it is even more important that the vessel can adapt to the desired geodesic fixed position and heading that change at any time for safe driving. Therefore, this article selects the time-varying function related to the desired geodesic fixed position and heading as the constraint condition, and the constraint condition will change in real time as the expected position and heading change. The design of the control strategy is difficult, and the designed control strategy will be more suitable for complex maritime navigation conditions. First, the article constructs a log-type barrier Lyapunov function. Second, by introducing an unknown external disturbance observer, the external disturbances caused by the environment that may be encountered during the vessel's voyage can be observed. Then, combined with the backstepping algorithm, a neural network (NN) control strategy and adaptive law are designed. Among them, for the uncertain function in the process of designing the control strategy, the NN is used to approximate it. Furthermore, through the Lyapunov stability analysis, it is shown that applying the designed control strategy to the vessel system in this article can ensure that the system is closed-loop stable. The final simulation experiment shows the effectiveness of the designed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call