Abstract
In this paper, we propose new receding horizon H/sub /spl infin// control (RHHC) schemes for linear input-constrained discrete time-invariant systems with disturbances. The proposed control schemes are based on the dynamic game problem of a finite-horizon cost function with a fixed finite terminal weighting matrix and a one-horizon cost function with time-varying finite terminal weighting matrices, respectively. We show that the resulting RHHCs guarantee closed-loop stability in the absence of disturbances and H/sub /spl infin// norm bound for 2-norm bounded disturbances. We also show that the proposed schemes can easily be implemented via linear matrix inequality (LMI) optimization. We illustrate the effectiveness of the proposed schemes through simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.