Abstract

The paper shows that in the Art of Thinking (The Port Royal Logic) Arnauld and Nicole introduce a new way to state the truth-conditions for categorical propositions. The definition uses two new ideas: the notion of distributive or, as they call it, universal term, which they abstract from distributive supposition in medieval logic, and their own version of what is now called a conservative quantifier in general quantification theory. Contrary to the interpretation of Jean-Claude Parienté and others, the truth-conditions do not require the introduction of a new concept of ‘indefinite’ term restriction because the notion of conservative quantifier is formulated in terms of the standard notion of term intersection. The discussion shows the following. Distributive supposition could not be used in an analysis of truth because it is explained in terms of entailment, and entailment in terms of truth. By abstracting from semantic identities that underlie distribution, the new concept of distributive term is definitionally prior to truth and can, therefore, be used in a non-circular way to state truth-conditions. Using only standard restriction, the Logic’s truth-conditions for the categorical propositions are stated solely in terms of (1) universal (distributive) term, (2) conservative quantifier, and (3) affirmative and negative proposition. It is explained why the Cartesian notion of extension as a set of ideas is in this context equivalent to medieval and modern notions of extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.