Abstract
Distributions of time averaged observables are investigated using deterministic maps with N indifferent fixed points and N-state continuous time random walk processes associated with them. In a weakly chaotic phase, namely when separation of trajectories is subexponential, maps are characterized by an infinite invariant density. We find that the infinite density can be used to calculate the distribution of time averages of integrable observables with a formula recently obtained by Rebenshtok and Barkai. As an example we calculate distributions of the average position of the particle and average occupation fractions. Our work provides the distributional limit theorem for time averages for a wide class of nonintegrable observables with respect to the infinite invariant density, in other words it deals with the situation where the Darling-Kac-Aaronson theorem does not hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.