Abstract

A 9-month time series of satellite infrared imagery was used to examine the sea surface temperature (SST) variability in the northern and central Baltic Sea. Objective multi-level edge detection techniques were applied to find sharp SST gradient areas known as fronts. The spatial distribution of frontal frequency was calculated over time periods from a few days to 9 months covering different thermal and wind conditions. The 9-month average frequency that a front is detected in a pixel of 1.1 x 1.1 km is up to 10% in certain areas whereas the median is around 2%. Large scale fronts are aligned to the coast and isobaths, and occur predominantly in areas of straight and uniformly sloping bottom topography. The major frontal areas are along the eastern coast of the Bothnian Sea and along the north-western coast of the Gulf of Finland. Low large-scale frontal frequency is characteristic to areas with highly structured bottom topography. The major mechanism of front generation is coastal upwelling, being complemented by coastal jets, eddies, differential heating and cooling, and water exchange between basins with different water characteristics. Filaments (“squirts”) originating from upwelling areas are shown to be an important mechanism for transporting water and substances over long distances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call