Abstract

Straw incorporation is an effective measure for increasing soil organic carbon (SOC) thereby improving soil quality and crop productivity. However, quantitative assessments of the transformation and distribution of exogenous carbon (C) in soil aggregates under various field fertilization practices have been lacking. In this study, we collected topsoil samples (0–20 cm) from three fertilization treatments (no fertilization control, CK; inorganic fertilizer, IF; inorganic fertilizer plus manure, IFM) at a 29-year long-term Mollisol experiment in Northeast China. We then mixed the soil samples with 13C-labeled maize straw (δ13C = 246.9‰), referred as CKS, IFS, and IFMS, and incubated them in-situ for 360 days. Initial and incubated soil samples were separated into four aggregate fractions (> 2, 1–2, 0.25–1, and < 0.25 mm) using the dry-sieving method, which counted 18%, 17%, 45%, and 21% (averages from the three initial soil samples), respectively. Organic C content was highest in 0.25–1 mm aggregate (6.9–9.6 g kg−1) prior to incubation, followed by > 2 mm aggregates (2.2–5.8 g kg−1), 1–2 mm aggregates (2.4–4.6 g kg−1), and < 0.25 mm aggregates (3.3–4.5 g kg−1). After 360-day incubation with straw incorporation, organic C content was 2.3–4.5 g kg−1, 2.9–5.0 g kg−1, 7.2–11 g kg−1 and 1.8–3.0 g kg−1 in > 2, 1–2, 0.25–1, and < 0.25 mm aggregates, respectively, with the highest in the IFMS treatment. Straw-derived C content was 0.02–0.05 g kg−1, 0.03–0.04 g kg−1, 0.11–0.13 g kg−1, and 0.05–0.10 g kg−1 in > 2, 1–2, 0.25–1, and < 0.25 mm aggregates, respectively. The relative distribution of straw-derived C was highest (40–49%) in 0.25–1 mm aggregate, followed by < 0.25 mm aggregates (21–31%), 1–2 mm aggregates (13–15%), and > 2 mm aggregates (9.4–16%). During the incubation, the relative distribution of straw-derived C exhibited a decrease in > 2 mm and 1–2 mm aggregates, but an increase in the < 0.25 mm aggregate. At the end of incubation, the relative distribution of straw-derived C showed a decrease in the 0.25–1 mm aggregate but an increase in the < 0.25 mm aggregate under the IFMS treatment. This study indicates that more straw-derived C would be accumulated in smaller aggregates over longer period in Mollisols, and combined inorganic and organic fertilization is an effective measure for C sequestration in Northeast China.

Highlights

  • Soil organic carbon (SOC) is an important component of the global carbon (C) cycle, as it makes up generally two-thirds of the terrestrial C p­ ool[1]

  • To better understand the mechanism of transformation and distribution of straw C in soil aggregates affected by different fertilizer management strategies, we conducted an in-situ incubation experiment based on a long-term experiment of Mollisols

  • This study will reveal the mechanism of exogenous straw C sequestration in soil aggregates and optimize fertilizer management strategies in the Mollisols region of Northeast China

Read more

Summary

Introduction

Soil organic carbon (SOC) is an important component of the global carbon (C) cycle, as it makes up generally two-thirds of the terrestrial C p­ ool[1]. In the past several decades, long-term unreasonable field management such as conventional tillage and crop straw removal or burning has led to serious agricultural problems, such as soil degradation, and substantial SOC losses, which results in a significant reduction in soil f­ertility[15,16]. To better understand the mechanism of transformation and distribution of straw C in soil aggregates affected by different fertilizer management strategies, we conducted an in-situ incubation experiment based on a long-term experiment of Mollisols. The objective of this study was to investigate the dynamics of transformation and distribution of crop straw C in soil aggregates under different fertilizer management strategies.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.