Abstract

The singular value decomposition is a matrix decomposition technique widely used in the analysis of multivariate data, such as complex space-time images obtained in both physical and biological systems. In this paper, we examine the distribution of singular values of low-rank matrices corrupted by additive noise. Past studies have been limited to uniform uncorrelated noise. Using diagrammatic and saddle point integration techniques, we extend these results to heterogeneous and correlated noise sources. We also provide perturbative estimates of error bars on the reconstructed low-rank matrix obtained by truncating a singular value decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.