Abstract

Our goal is to train control policies that generalize well to unseen environments. Inspired by the Distributionally Robust Optimization (DRO) framework, we propose DRAGEN — Distributionally Robust policy learning via Adversarial Generation of ENvironments — for iteratively improving robustness of policies to realistic distribution shifts by generating adversarial environments. The key idea is to learn a generative model for environments whose latent variables capture cost-predictive and realistic variations in environments. We perform DRO with respect to a Wasserstein ball around the empirical distribution of environments by generating realistic adversarial environments via gradient ascent on the latent space. We demonstrate strong Out-of-Distribution (OoD) generalization in simulation for (i) swinging up a pendulum with onboard vision and (ii) grasping realistic 3D objects. Grasping experiments on hardware demonstrate better sim2real performance compared to domain randomization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.