Abstract

• A distributionally robust parameter identification model is proposed for time-delay systems. • The problem is transformed to a single-level optimization problem. • A gradient-based optimization method is developed to solve the transformed problem. In this paper, we consider a parameter identification problem involving a time-delay dynamical system, in which the measured data are stochastic variable . However, the probability distribution of this stochastic variable is not available and the only information we have is its first moment. This problem is formulated as a distributionally robust parameter identification problem governed by a time-delay dynamical system. Using duality theory of linear optimization in a probability space, the distributionally robust parameter identification problem, which is a bi-level optimization problem, is transformed into a single-level optimization problem with a semi-infinite constraint. By applying problem transformation and smoothing techniques, the semi-infinite constraint is approximated by a smooth constraint and the convergence of the smooth approximation method is established. Then, the gradients of the cost and constraint functions with respect to time-delay and parameters are derived. On this basis, a gradient-based optimization method for solving the transformed problem is developed. Finally, we present an example, arising in practical fermentation process, to illustrate the applicability of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.