Abstract

Berth allocation problems are amongst the most important problems occurring in port terminals, and they are greatly affected by several unpredictable events. As a result, the study of these problems under uncertainty has been a target of more and more researchers. Following this research line, we consider the berth allocation problem under uncertain handling times. A distributionally robust two-stage model is presented to minimize the worst-case of the expected sum of delays with respect to a set of possible probability distributions of the handling times. The solutions of the proposed model are obtained by an exact decomposition algorithm for which several improvements are discussed. An adaptation of the proposed algorithm for the case where the assumption of relatively complete recourse fails is also presented. Extensive computational tests are reported to evaluate the effectiveness of the proposed approach and to compare the solutions obtained with those resulting from the stochastic and robust approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.