Abstract

Classical stochastic model predictive control (SMPC) methods assume that the true probability distribution of uncertainties in controlled systems is provided in advance. However, in real-world systems, only partial distribution information can be acquired for SMPC. The discrepancy between the true distribution and the distribution assumed can result in sub-optimality or even infeasibility of the system. To address this, we present a novel distributionally robust data-driven MPC scheme to control stochastic nonlinear systems. We use distributionally robust constraints to bound the violation of the expected state-constraints under process disturbance. Sequential linearization is performed at each sampling time to guarantee that the system's states comply with constraints with respect to the worst-case distribution within the Wasserstein ball centered at the discrete empirical probability distribution. Under this distributionally robust MPC scheme, control laws can be efficiently derived by solving a conic program. The competence of this scheme for disturbed nonlinear systems is demonstrated through two case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call