Abstract

Distributionally robust optimization (DRO) is a powerful tool for decision making under uncertainty. It is particularly appealing because of its ability to leverage existing data. However, many practical problems call for decision-making with some auxiliary information, and DRO in the context of conditional distributions is not straightforward. We propose a conditional kernel distributionally robust optimization (CKDRO) method that enables robust decision making under conditional distributions through kernel DRO and the conditional mean operator in the reproducing kernel Hilbert space (RKHS). In particular, we consider problems where there is a correlation between the unknown variable y and an auxiliary observable variable x. Given past data of the two variables and a queried auxiliary variable, CKDRO represents the conditional distribution $\mathbb{P}\left( {y|x} \right)$ as the conditional mean operator in the RKHS space and quantifies the ambiguity set in the RKHS as well, which depends on the size of the dataset as well as the query point. To justify the use of RKHS, we demonstrate that the ambiguity set defined in RKHS can be viewed as a ball under a metric that is similar to the Wasserstein metric. The DRO is then dualized and solved via a finite dimensional convex program. The proposed CKDRO approach is applied to a generation scheduling problem and shows that the result of CKDRO is superior to common benchmarks in terms of quality and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.