Abstract
Conventional chance-constrained programming methods suffer from the inexactness of the estimated probability distribution of the underlying uncertainty from data. To this end, a distributionally robust approach to the problem allows for a level of ambiguity considered around a reference distribution. In this work, we propose a novel formulation for the distributionally robust chance-constrained programming problem using an ambiguity set constructed from a variant of optimal transport distance that was developed for Gaussian Mixture Models. We show that for multimodal process uncertainty, our proposed method provides an effective way to incorporate statistical moment information into the ambiguity set construction step, thus leading to improved optimal solutions. We illustrate the performance of our method on a numerical example as well as a chemical process case study. We show that our proposed methodology leverages the multimodal characteristics from the uncertainty data to give superior performance over the traditional Wasserstein distance-based method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.