Abstract
We establish distributional estimates for noncommutative martingales, in the sense of decreasing rearrangements of the spectra of unbounded operators, which generalises the study of distributions of random variables. Our results include distributional versions of the noncommutative Stein, dual Doob, martingale transform and Burkholder-Gundy inequalities. Our proof relies upon new and powerful extrapolation theorems. As an application, we obtain some new martingale inequalities in symmetric quasi-Banach operator spaces and some interesting endpoint estimates. Our main approach demonstrates a method to build the noncommutative and classical probabilistic inequalities in an entirely operator theoretic way.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.