Abstract
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyze the ratios of the data values. A common approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property and can be applied to a wider class of methods. This weighted log-ratio analysis is theoretically equivalent to "spectral mapping", a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modeling. The weighted log-ratio methodology is used here to visualize frequency data in linguistics and chemical compositional data in archeology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.