Abstract

Dissipation of enstrophy in 2D incompressible flows in the zero viscous limit is considered to play a significant role in the emergence of the inertial range corresponding to the forward enstrophy cascade in the energy spectrum of 2D turbulent flows. However, since smooth solutions of the 2D incompressible Euler equations conserve the enstrophy, we need to consider non-smooth inviscid and incompressible flows so that the enstrophy dissipates. Moreover, it is physically uncertain what kind of a flow evolution gives rise to such an anomalous enstrophy dissipation. In this paper, in order to acquire an insight about the singular phenomenon mathematically as well as physically, we consider a dispersive regularization of the 2D Euler equations, known as the Euler-\(\alpha \) equations, for the initial vorticity distributions whose support consists of three points, i.e., three \(\alpha \)-point vortices, and take the \(\alpha \rightarrow 0\) limit of its global solutions. We prove with mathematical rigor that, under a certain condition on their vortex strengths, the limit solution becomes a self-similar evolution collapsing to a point followed by the expansion from the collapse point to infinity for a wide range of initial configurations of point vortices. We also find that the enstrophy always dissipates in the sense of distributions at the collapse time. This indicates that the triple collapse is a mechanism for the anomalous enstrophy dissipation in non-smooth inviscid and incompressible flows. Furthermore, it is an interesting example elucidating the emergence of the irreversibility of time in a Hamiltonian dynamical system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call