Abstract
The distributional dimension of fractal sets in ℝn has been systematically studied by Triebel by virtue of the theory of function spaces. In this paper, we first discuss some important properties about the B-type spaces and the F-type spaces on local fields, then we give the definition of the distributional dimension dimD in local fields and study the relations between distributional dimension and Hausdorff dimension. Moreover, the analysis expression of the Hausdorff dimension is given. Lastly, we define the Fourier dimension in local fields, and obtain the relations among all the three dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.