Abstract
A nonhomogeneous birth process generalizing the Polya process is analyzed, and the distribution of the transition probabilities is shown to be the convolution of a negative binomial distribution and a compound Poisson distribution, whose secondary distribution is a mixture of zero-truncated geometric distributions. A simplified form of the secondary distribution is obtained when the transition intensities have a particular structure, and may sometimes be expressed in terms of Stirling numbers and special functions such as the incomplete gamma function, the incomplete beta function, and the exponential integral. Conditions under which the compound Poisson form of the marginal distributions may be improved to a geometric mixture are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.