Abstract

Resilience of a distribution system can be enhanced by efficient restoration of critical load following a major outage. Existing models include optimization approaches that consider available information without incorporating the inherent asynchrony of data arrival during execution of the restoration plan. Failure to consider the asynchronous nature of information arrival can lead to underutilization of critical resources. Moreover, analytical models become computationally inefficient for large scale systems. On the other hand, artificial intelligence (AI)-based tools have demonstrated efficient results for power system applications. In this paper, it is proposed a Reinforcement Learning (RL) model that learns how to efficiently restore a distribution system after a major outage. The proposed approach is based on a Monte Carlo Tree Search to expedite the training process. The proposed model strategy provides a robust decision-making tool for asynchronous and partial information scenarios. The results, validated with the IEEE 13-bus test feeder and IEEE 8500-node distribution test feeder, demonstrate the effectiveness and scalability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.