Abstract

BackgroundPhthalates were detected in various environments due to their widespread application. In this study, indoor dust samples from 94 buildings, including 72 residences and 22 dormitories, were collected in seven geographical regions in China and analyzed for eight phthalate esters (PAEs). Investigation of contamination profiles, geographical distribution, sources, and risks of PAEs in indoor dusts was explored.ResultsThe highest Σ8PAEs concentration in residential buildings was found in Northeast China (median: 164.71 μg·g−1), which was 2.3 and 2.8 times higher than that in South China (median: 71.71 μg·g−1) and Southwest China (median: 58.53 μg·g−1), respectively. Di (2-ethylhexyl) phthalate (DEHP), di-iso-butyl phthalate (DIBP), and di-n-butyl phthalate (DBP) were the dominant compounds of Σ8PAEs in indoor dusts from residences and dormitories. The administrative levels revealed that the highly serious contamination occurred in the provincial capital, followed by nonprovincial cities and countries. Such an occurrence was related to the usage of PAE products and the level of urbanization. Principal component analysis (PCA) and positive matrix factorization (PMF) showed that the emission from cosmetics and personal care products, plasticizers, and household building materials were the possible PAE sources in indoor dusts. Among three routes of ingestion, dermal adsorption, and inhalation, dust ingestion was the main route of human exposure to PAEs. The health risk of PAE exposure for different populations in descending order of children > women > men. The hazard indexes of noncancer were higher than the threshold value of 10−6 during human exposure to DBP and DEHP. Children also faced potential noncancer risk due to benzyl butyl phthalate (BBzP) and di-n-octyl phthalate (DnOP) exposure. The carcinogenic risks via exposure to BBzP and DEHP were negligible.ConclusionOverall, PAEs were widely presented in indoor dusts. Obvious difference was observed in the distribution of PAEs concentration in indoor dusts due to the differences in economic development and usage of PAEs product. Plasticizers, household building materials, and cosmetics and personal care products were likely PAE sources in indoor dusts. The risk assessment suggested that carcinogenic risks of BBzP and DEHP were negligible, but DBP, DEHP, DnOP, and BBzP may pose noncancer risks to humans.

Highlights

  • Phthalates were detected in various environments due to their widespread application

  • This study aims to investigate the concentration, spatial distribution characteristics, sources, and health risks to human exposure to phthalate esters (PAEs) in indoor dusts from residences and dormitories

  • The results indicated that the total intakes ΣADD (­ADDing + ADDinh + ADDder) of PAEs from indoor dusts for children and adults were 4.38 × 10−4 and 7.23 × 10−5 mg·kg−1·d−1 respectively indicating that children were more susceptible to the PAE intake than the adults

Read more

Summary

Introduction

Phthalates were detected in various environments due to their widespread application. Phthalate esters (PAEs) are a class of manufactured organic chemicals that have been used as plasticizers/ additives, emollients, antifoaming agents, humectants, or carriers in various industrial and consumer products [1,2,3,4]. Phthalate esters were dominated plasticizers, accounting for 70–80% of the market share of plastic plasticizers, Li et al Environ Sci Eur (2021) 33:19 and the domestic PVC production capacity was 22.82 million tons in 2017 [5]. Low molecular weight PAEs, such as dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DBP), are mainly used as solvents or carriers in personal care products and coatings. PAEs with long/branching alkyl chain, such as di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), and benzyl butyl phthalate (BBzP), are mainly used as plasticizers in the polymers to improve flexibility, workability, and general handling properties [1, 8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call