Abstract
The study of sediment sources and transport processes from land to ocean can help in predicting the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas and/or open oceans. The activities of 7Be, excess 210Pb (210Pbxs), excess 234Th (234Thxs) and 137Cs in surface sediments collected offshore of eastern Hainan Island, China, in August of 2008 were measured by an HPGe γ-spectrometer to evaluate the sediment source and transport processes. The results showed that all the surface sediments were silt or sand, and the mean grain sizes of the northern locations were higher than those in the other regions. The ranges of activities of 7Be, 210Pbxs, 234Thxs and 137Cs in surface sediment were 0.14–12.7, 37.4–199, 2.24–176 and 0.02–1.06Bqkg−1, with averages of 3.78±4.77, 110±8.1, 66.7±8.9 and 0.52±0.22Bqkg−1, respectively. The activities of the radionuclides increased from coast to offshore in the northern section. The upwelling may cause high particle fluxes with high activities of 210Pbxs and 234Thxs. A comparison of the source and transport of the suspended sediments with river discharge along the coast shows that the coastal current and offshore upwelling are the dominant factors for the transport and sources of surface sediment in the study region. The sediment was transported from south to north by the coastal current, and sediments with a large grain size may be deposited via the north loop current. The ratios of the nuclide activities indicated that the suspended particles need approximately one year to be removed from the water column into the seabed and that the main source of the sediments off eastern Hainan Island in the study regions was terrigenous deposits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.