Abstract

The density distribution patterns of water inside and outside neutral and charged single-walled carbon nanotubes (SWNTs) soaked in water have been studied using molecular dynamics simulations based on TIP3P potential and Lennard-Jones parameters of CHARMM force field, in conjunction with ab initio calculations to provide the electron density distributions of the systems. Water molecules show different electropism near positively and negatively charged SWNTs. Different density distribution patterns of water, depending on the diameter and chirality of the SWNTs, are observed inside and outside the tube wall. These special distribution patterns formed can be explained in terms of the van der Waals and electrostatic interactions between the water molecules and the carbon atoms on the hexagonal network of carbon nanotubes. The electric field produced by the highly charged SWNTs leads to high filling speed of water molecules, while it prevents them from flowing out of the nanotube. Water molecules enter the neutral SWNTs slowly and can flow out of the nanotube in a fluctuating manner. It indicates that by adjusting the electric charge on the SWNTs, one can control the adsorption and transport behavior of polar molecules in SWNTs to be used as stable storage medium with template effect or transport channels. The transport rate can be tailored by changing the charge on the SWNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call