Abstract

Summary Aim We investigate the biogeography of Austral Polychaeta (Annelida) using members of the families Eunicidae, Lumbrineridae, Oenonidae, Onuphidae, Serpulidae and Spionidae and Parsimony Analysis of Endemicity (PAE). We determine whether observed polychaete distribution patterns correspond to traditional shallow‐water marine areas of endemism, estimate patterns of endemism and relationships between areas of endemism, and infer the biological processes that have caused these patterns. Location The study is concerned with extant polychaete taxa occupying shallow‐water areas derived from the breakup of the Gondwana landmass (i.e. Austral areas). Methods Similarity was assessed using a significance test with Jaccard's indices. Areas not significantly different at 0.99 were combined prior to the PAE. Widespread species and genera (155 taxa) were scored for presence/absence for each area of endemism. PAE was used to derive hypotheses of area relationships. Hierarchical patterns in the PAE trees were identified by testing for congruence with patterns derived from cladistic biogeographic studies of other Gondwanan taxa and with geological evidence. Results The polychaete faunas of four area‐pairs were not significantly different and the areas amalgamated: South‐west Africa and South Africa, New Zealand South Island and Chatham Islands, Macquarie Island and Antipodean Islands, and West Antarctica and South Georgia. Areas with the highest levels of species endemism were southern Australia (67.0%), South‐east South America (53.2%) and South Africa (40.4%). About 60% of species and 7.5% of genera occupied a single area of endemism. The remainder were informative in the PAE. Under a no long‐distance dispersal assumption a single minimal‐length PAE tree resulted (l=367; ci=0.42); under dispersal allowed, three minimal‐length trees resulted (l=278; ci=0.56). In relation to the sister grouping of the New Zealand areas and Australia we find congruence between our minimal‐length trees and those derived from a biogeographic study of land plants, and with area relationships predicted by the Expanding Earth Model. Main conclusions The polychaete distribution patterns in this study differ slightly from the classical areas of endemism, most notably in being broader, thereby bringing into question the value of using single provincial system for marine biogeographic studies. The Greater New Zealand region is found to be ‘monophyletic’ with respect to polychaetes, that is comprising a genuine biogeographical entity, and most closely related to the polychaete fauna of southern Australia. This finding is consistent with studies of land plants and with the Expanding Earth model, but disagrees with conventional geology and biogeographic hypothesis involving a ‘polyphyletic’ New Zealand. Both vicariance and concerted range expansion (=biotic dispersion) appear to have played important roles in shaping present‐day distribution patterns of Austral polychaetes. Shallow‐water ridge systems between the Australian and Greater New Zealand continental landmasses during the Tertiary are thought to have facilitated biotic dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call