Abstract

Microbial communities are the key component to maintaining the structure and function of forest soil ecosystems. The vertical distribution of bacterial communities on the soil profile has an important impact on forest soil carbon pools and soil nutrient cycling. Using Illumina MiSeq high-throughput sequencing technology, we analyzed the characteristics of bacterial communities in the humus layer and 0-80 cm soil layer of Larix principis-rupprechtii in Luya Mountain, China, to explore the driving mechanisms affecting the structure of bacterial communities in soil profiles. The results showed that the α diversity of bacterial communities decreased significantly with increasing soil depth, and community structure differed significantly across soil profiles. The relative abundance of Actinobacteria and Proteobacteria decreased with increased soil depth, whereas the relative abundance of Acidobacteria and Chloroflexi increased with the increase in soil depth. The results of RDA analysis showed that soil NH+4, TC, TS, WCS, pH, NO-3, and TP were important factors determining the bacterial community structure of the soil profile, among which soil pH had the most significant effect. Molecular ecological network analysis showed that the complexity of bacterial communities in the litter layer and subsurface soil (10-20 cm) was relatively high, whereas the complexity of bacterial communities in deep soil (40-80 cm) was relatively low. Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria played important roles in the structure and stability of soil bacterial communities in Larch. The species function prediction of Tax4Fun showed a gradual decline in microbial metabolic capacity along the soil profile. In conclusion, soil bacterial community structure showed a certain distribution pattern along the vertical profile of soil, the community complexity gradually decreased, and the unique bacterial groups of deep soil and surface soil were significantly different.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call