Abstract
The central distribution of afferents that innervate the macula of the saccule and the crista of the posterior canal was assessed in the gerbil following the direct injection of horseradish peroxidase (HRP) separately into the sensory neuroepithelia of each peripheral receptor organ. Ganglion cells innervating the posterior canal were located in the caudal part of the inferior ganglion, while those cells innervating the saccule were located in the rostral part of the inferior ganglion, scattered in the superior ganglion, and concentrated at the junction (isthmus) between the two. The paths of the central axons of these two groups of ganglion cells through the vestibular root and their division into ascending or descending pathways were similar. However, the distributions of their terminals were different. The posterior canal projected to medial parts of the vestibular nuclear complex. Terminals were found in the medial and superior vestibular nuclei. The posterior canal also projected to the uvula of the cerebellum. The saccule projected to more lateral-lying brainstem areas. Terminal fields were located in the lateral and descending vestibular nuclei and cell group y. Saccule projections outside the vestibular complex were observed to the lateral cuneate nucleus, the N. gigantocellularis, and the cerebellar cortex. Of the eight areas receiving primary afferent projections from these two organs, only within the medial and descending vestibular nuclei and the cerebellar cortex were overlapping projections observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.