Abstract

AbstractUltra‐low‐frequency (ULF) waves are known to radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the frequencies of the waves, leading to resonant interactions. The theoretical framework for this process is described by analytic expressions of the resonant interactions between electrons and toroidal and poloidal ULF wave modes in a background magnetic field. However, most expressions estimate the radial diffusion rates based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground. In this study, using multiyear measurements from the THEMIS and Arase missions, we present a statistical analysis of the distribution of ULF wave power in magnetic latitude and local time and show that the wave power of the radial and azimuthal components of the magnetic field increases away from the magnetic equator. Our result could have significant implications for the radial diffusion rates as currently estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call