Abstract

Predicting facies distribution in turbidite systems is essential for resource exploration and identifying geohazards from an economic standpoint. Models that describe facies distribution depend heavily on understanding the mechanisms of particle transport and deposition. These processes are closely tied to the volume, concentration, and composition of sediment gravity flows, which display a range of behaviours between turbulent and laminar flow extremes. Recently, there has been a rise in studies on transitional flow deposits, although they remain much less understood than fully turbulent or laminar flows.For the first time, the distribution of Structured sandstone–mudstone associated with transitional flow deposits has been quantitatively presented for various sedimentary environments within the turbidite system. The distribution of Structured sandstone–mudstone was analysed for six areas of the Ropianka Fm (Skole Nappe, Polish Outer Carpathians) across twelve sedimentary environments, including channels, channel-levees, channel-mouths, and sub-environments of the depositional lobe. An increased amount of Structured sandstone–mudstone was observed in proximal settings away from the transport axis and in the distal parts of the turbidite system. It was found that flow transformation can occur in both proximal and distal zones of the turbidite system. Structured sandstone–mudstone in proximal zones is more often deposited from diluted mud-laden flows of small volume, where fine-grained cohesive material likely underwent vertical segregation. In contrast, Structured sandstone–mudstone formed basinward tend to be initially formed by larger flows. In proximal part of depositional lobe setting, the flow transformation due to longitudinal or longitudinal and vertical segregation of fine-grained cohesive material occurs slowly. At this point the velocity of sediment gravity flow is too high and the concentration of cohesive particles is too low for common development of cohesive bonds. Flow transformation accelerates in lobe fringe and lobe distal fringe/interlobe, due to flow deceleration, changes in sand-to-mud ratio, and the time required for development of cohesive bonds and the transition to a transitional flow regime, leading to increased deposition of Structured sandstone–mudstone distally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.