Abstract

The zebrafish has emerged as an important model system for the experimental analysis of vertebrate development because it is amenable to genetic analysis and because its optical clarity allows the movements and the differentiation of individual cells to be followed in vivo. In this paper, we have sought to characterize the spatial distribution of tissue progenitors within the outer cell layers of the embryonic shield region of the early gastrula. Single cells were labeled by iontophoretic injection of fluorescent dextrans. Subsequently, we documented their position with respect to the embryonic shield and their eventual fates. Our data show that progenitor cells of the neural, notochordal, somitic and endodermal lineages were all present within the embryonic shield region, and that these progenitors were arranged as intermingled populations. Moreover, close to the midline, there was evidence for significant biases in the distribution of neural and notochord progenitors between the layers, suggesting some degree of radial organization within the zebrafish embryonic shield region. The distributions of tissue progenitors in the zebrafish gastrula differ significantly from those in amphibians; this bears not only on interpretations of mutant phenotypes and in situ staining patterns, but also on our understanding of morphogenetic movements during gastrulation and of neural induction in the zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.