Abstract

The distribution of the transport current in a superconducting filament aligned parallel to the flat surface of a semi-infinite bulk magnet is studied theoretically. An integral equation governing the current distribution in the Meissner state of the filament is derived and solved numerically for various filament–magnet distances and different relative permeabilities. This reveals that the current is depressed on the side of the filament adjacent to the surface of the magnet and enhanced on the averted side. Substantial current redistributions in the filament can already occur for low values of the relative permeability of the magnet, when the distance between the filament and the magnet is short, with evidence of saturation at moderately high values of this quantity, similar to the findings for magnetically shielded strips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.