Abstract
A set of second order spheroidal Love-Shida numbers ( h( r), k( r), l( r)) and their radial derivatives were determined for the case of a symmetric, non-rotating, elastic, isotropic (SNREI) Earth with a liquid core. By these means, the stress tensor components from the surface to the core-mantle boundary (CMB) were calculated for the case of zonal, tesseral and sectorial tides. The possible dependence of geophysical phenomena on the lunisolar effect is discussed for the three different kinds of tides. The case of tidal triggering of earthquakes is discussed in more detail. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions on and within the Earth, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. A correlation between earthquake energy release and the lunisolar effect can exist in some cases where the seismic area is well determined and has either one seismic source or severe similar ones. Particularly in volcanic areas, where the seismic activity is connected to the volcano's activity, or in the case of some aftershock swarms, significant correlation was found by different authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.