Abstract
The distribution of [ 125I]ω-conotoxin GVIA binding sites, the putative voltage-sensitive calcium channels, was studied by an autoradiographic method in the rat brain. The toxin binding sites were distributed throughout the brain in a highly heterogeneous manner. The highest density of the binding sites was observed in the cerebral cortex, hippocampus, amygdaloid complex, substantia nigra, caudate putamen, superior colliculus, nucleus of the solitary tract, and the dorsal horn of the cervical spine. The glomerular layer of the olfactory bulb, molecular layer of the cerebellar cortex, and posterior lobe of the hypophysis showed intermediate density but the density was higher than in the surrounding areas. The globus pallidus, thalamic areas, inferior olive, and pontine nuclei showed low density, while no binding sites were observed in the white matter tract regions such as the internal and external capsule, corpus callosum, fimbria of the hippocampus, fornix, stria medullaris of the thalamus, and fasciculus retroflexus. This distribution of ω-conotoxin binding sites indicates that the toxin binding sites are localized in those areas of the brain enriched in synaptic connections. This distribution pattern resembles that reported for voltage-sensitive sodium channels but it differs from that of the binding sites of dihydropyridines and verapamil. These results suggest that ω-conotoxin recognizes different molecules from organic calcium channel antagonist binding sites and that ω-conotoxin-sensitive voltage-sensitive calcium channels are concentrated in the synaptic zones and play a key role in the excitation-secretion coupling of neurotransmitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.