Abstract

Archaea have unique glycerol dialkyl glycerol tetraether (GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86. This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea (SCS). Samples were collected from core-top sediments (0–5 cm) in the northern SCS. Total lipids were extracted to obtain core GDGTs, which were identified and quantified using liquid chromatography-mass spectrometry (LC-MS). The abundance of isoprenoidal GDGTs (iGDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment, whereas the branched GDGTs (bGDGTs), supposedly derived from terrestrial sources, ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment. The TEX86-derived sea surface temperatures ranged from 20.9 °C in the coast (water depth < 160 m) to 27.9 °C offshore (water depth > 1000 m). TEX86-derived temperatures near shore (<160 m water depth) averaged 23.1 ± 2.5 °C (n = 4), which were close to the satellite-derived winter mean sea surface temperature (average 22.6 ± 1.0 °C, n = 4); whereas the TEX86-derived temperatures offshore averaged 27.4 ± 0.3 °C (n = 7) and were consistent with the satellite mean annual sea surface temperature (average 26.8 ± 0.4 °C, n = 7). These results suggest that TEX86 may record the sea surface mean annual temperature in the open ocean, while it likely records winter sea surface temperature in the shallower water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.