Abstract

ABSTRACT Disseminated ores in the Norilsk 1 intrusion were studied to elucidate the typomorphic features of sulfides and noble metal mineralizations in picritic and taxitic (or lower olivine) gabbro-dolerites. The former are characterized by the development of a low-sulfur sulfide association (troilite, Fe-rich pentlandite, talnakhite, chalcocite, native copper) while the latter exhibits a high-sulfur association (monoclinic pyrrhotite, Ni-rich pentlandite, pyrite, heazlewoodite). The contact between these types of rocks is geochemically and mineralogically contrasting. The mineralogical and geochemical zoning directed from the roof to the base of each layer is expressed by an increase in the Cu content (and chalcopyrite) in ores, an increase in the concentration of Ni in pentlandite and S in pyrrhotite in line with a decrease of the crystallization temperature, and an increase in sulfur fugacity in the same direction. Zoning of Pd(Pt) mineralization in picritic and taxitic (olivine) gabbro-dolerites is uniform and characterized by the distribution of Pd-Sn compounds in the upper parts (together with Pd-Pb minerals in picritic rocks) and Pd-As compounds in the lower parts of the sections according to a drop in temperature. Such reverse zoning contradicts the typical mechanism of differentiation by fractional crystallization, and possibly suggests a fluid-magmatic nature. Mineralogical and geochemical features in platinum group element-Cu-Ni-bearing rocks are consistent with the idea that different stages of multi-pulse intrusions of mafic-ultramafic magmas with different compositions formed the picritic and taxitic gabbro-dolerites of the Norilsk region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call