Abstract

BackgroundDendritic cells (DCs) play a major role as regulators of inflammatory events associated with thyroid pathology. The immunoregulatory function of DCs depends strongly on their subtype, as well as maturation and activation status. Numerous hormonal factors modulate the immune properties of DCs, however, little is known about effects exerted by the hypothalamus-pituitary-thyroid-axis. Recently, we have shown a direct regulatory influence of thyroid hormones (TH) on human DCs function. The aim of the present study was to analyze the effect of systemically administered thyrotropin (TSH) on human blood DCs ex vivo.MethodsBlood samples for the cytometric analysis of peripheral blood plasmacytoid and myeloid DCs subtypes were collected from patients subjected to total thyroidectomy because of differentiated thyroid carcinoma at 2 time points: (i) directly before the commencement of TSH administration and (ii) 5 days after first TSH injection. The whole blood quantitative and phenotypic analysis of plasmacytoid and myeloid DCs subtypes was performed by flow cytometry.ResultsAdministration of TSH did not influence the percentage of plasmacytoid DCs in peripheral blood of study participants. Also the percentage of the two main myeloid DCs subpopulations – CD1c/BDCA1+ DCs and CD141/BDCA3+ DCs did not change significantly. TSH administration had no effect on the surface expression of CD86 – one of the major costimulatory molecules – neither in the whole peripheral blood mononuclear cell (PBMC) fraction nor in particular DCs subtypes.ConclusionsIn the present study, we demonstrated no influence of systemic TSH administration on human peripheral blood DCs subtypes. These results are in accordance with our previous work suggesting the direct effect of TH on human DCs ex vivo.

Highlights

  • Dendritic cells (DCs) play a major role as regulators of inflammatory events associated with thyroid pathology

  • We observed that the supplementation of L-T4 resulted in a significant quantitative increase of plasmacytoid and myeloid DCs circulating in patients’ peripheral blood, as well as in an up-regulation of the surface expression of CD86 co-stimulatory molecule on both DCs subtypes

  • The percentage of human peripheral blood DCs subtypes was not influenced by recombinant human TSH (rhTSH) administration The administration of rhTSH did not influence the percentage of plasmacytoid DCs in peripheral blood of study participants (0.513 ± 0.238% vs. 0.609 ± 0.495%; p = 0.41)

Read more

Summary

Introduction

Dendritic cells (DCs) play a major role as regulators of inflammatory events associated with thyroid pathology. For that purpose we compared ex vivo the phenotype and immunoregulatory properties of peripheral blood DCs subtypes in thyroidectomized patients in two thyrometabolic states – during withdrawal of L-thyroxine (L-T4) treatment and, subsequently, after administration of L-T4 for 2–3 months. In this experimental model, we observed that the supplementation of L-T4 resulted in a significant quantitative increase of plasmacytoid and myeloid DCs circulating in patients’ peripheral blood, as well as in an up-regulation of the surface expression of CD86 co-stimulatory molecule (regarded as the main DCs maturation marker) on both DCs subtypes. The results of in vitro experiments confirmed the direct influence of TH on DCs, the role of TSH fluctuations in vivo in the immunological observations associated with TH treatment could not be fully excluded [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.