Abstract

Excitatory and inhibitory pathways have specific patterns of innervation along the somato-dendritic axis of neurons. We have investigated whether this morphological diversity was associated with variations in the frequencies of spontaneous and miniature GABAergic and glutamatergic synaptic currents along the somato-dendritic axis of rat hippocampal CA1 pyramidal neurons. Using in vitro whole cell recordings from somata, apical dendrites and basal dendrites (for which we provide the first recordings) of CA1 pyramidal neurons, we report that over 90% of the spontaneous currents were GABAergic, <10% being glutamatergic. The frequency of spontaneous GABAergic currents was comparable in the soma and in the dendrites. In both somata and dendrites, the Na + channel blocker tetrodotoxin abolished more than 80% of the spontaneous glutamatergic currents. In contrast, tetrodotoxin abolished most dendritic (>90%) but not somatic (<40%) spontaneous GABAergic currents. Computer simulations suggest that in our experimental conditions, events below 40 pA are electrotonically filtered to such a degree that they are lost in the recording noise. We conclude that, in vitro, inhibition is massively predominant over excitation and quantitatively evenly distributed throughout the cell. However, inhibition appears to be mainly activity-dependent in the dendrites whereas it can occur in the absence of interneuron firing in the soma. These results can be used as a benchmark to compare values obtained in pathological tissue, such as epilepsies, where changes in the balance between excitation and inhibition would dramatically alter cell behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.