Abstract

The term somatostatin refers to a family of peptides, mainly somatostatin-14, somatostatin-28 and somatostatin-28 (1-12), which are the cleavage products of a single 116 amino acid-long preprosomatostain molecule. The production of antibodies to these peptides allows their localization in a number of neuronal populations throughout the entire neuroaxis in many mammals. The dog has been pointed out as an extremely useful animal model for studying age-related cognitive dysfunction and other neuronal changes associated with aging in which somatostatin appears to be involved. However, only very scanty information is available with regard to the distribution of somatostatin in the brain of the dog. In the present work we have determined the pattern of the distribution of somatostatin-28 (1-12) immunoreactivity in the diencephalon and the brainstem of the dog. High to moderate densities of labeled perikarya were found in the anterior periventricular and arcuate hypothalamic nuclei, the reticular thalamic nucleus, in delimited parts of the nucleus of the brachium inferior colliculus, the retrorubral area, the dorsal raphe nucleus, the myelencephalic reticular formation and the dorsal motor nucleus of the vagus. Less dense population of somatostatin cells were localized in other diencephalic and brainstem nuclei. The distribution of labeled fibers was even broader as in addition to those above mentioned there were a number of areas that appeared devoid of labeled perikarya. Many of the findings were similar to those reported in earlier works while others underlined the existence of inconsistencies in the distribution pattern of this peptide in the brain of mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.