Abstract

Agriculture and ecosystems are very solar radiation-sensitive making them useful for monitoring the impact on future food production. Accurate solar radiation data are necessary to evaluate major physiological reaction of crops and an impact of climate change. For most upland crops and orchard plants growing in sloping terrain, however the meteorological data are often limited. Considering the scarcity of detailed meteorological data around the country, there is a need for methods which can estimate reference solar radiation with limited data. This study describes a method to estimate monthly average daily solar radiation of considering the slope distribution. It was calculated using the 2010’s meteorological data and KT method which is entered DEM and spatial interpolation data of both monthly average daily extraterrestrial radiation and monthly average daily radiation on land surface. Extracted slope from the DEM in South Korea include range between 0∘ to 77∘ and most of the land is mountainous. According to the slope, solar radiation characteristic show to have high value in spring season (April) relatively other season. Summer season interrupt to reach direct solar radiation, cause is unstable atmospheric and cloud. The distributions of monthly accumulated solar radiation indicated that differences caused by the topography effect are more important in winter than in other season because of the dependency on the solar altitude angle and duration of sunshine. Result of KT method is confirmed to overestimate monthly average 1.38MJ⁄m􀬶⁄day than solar radiation weather station measurement values. Solar radiation of slope error value will need continuous research and correction through both fields survey and topography factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.