Abstract

Soil organic matter (SOM) plays a central role in mediating soil productivity through its impacts on nutrient cycling and retention, aggregate stability and water retention. Thus, management techniques or technologies including novel soil amendments could benefit farmers through the accumulation of carbon (C) and other nutrients in SOM. However, these same inputs can also lead to accelerated mineralization of native SOM through the process known as priming. This unresolved paradox may be due to the limited understanding of how different SOM fractions respond to priming and in which direction. In this study, we examine the response of functionally distinct SOM fractions to priming when soils are amended with lactobionate, a low molecular weight sugar acid byproduct of cheese manufacturing. Liquid-based 13C lactobionate was added to an agricultural silty loam soil to study its persistence, priming effects, and response of different SOM fractions to lactobionate over 84 days. Cumulative soil carbon dioxide (CO2) was greater in lactobionate-amended soils versus control and by the end of the experiment, 53% of added lactobionate was mineralized. In total, positive priming of 40% of extant SOM was observed from 14 to 84 days. Lactobionate-induced changes to SOM fractions were determined at days 14, 28, 56 and 84 of the incubation to examine if and how priming altered the distribution of C between fast and slow-cycling SOC fractions. In response to lactobionate, the total C content of the water extractable organic matter (WEOM) fraction initially increased by 100% from the dissolved lactobionate we added, but then declined and at a faster rate than other SOM fractions. In addition, the total C of the light-fraction particulate organic matter (LF-POM) fraction also declined. At the same time, we observed total C increases in the slower-cycling sand-sized POM (H-POM) and mineral-associated organic (MAOM) C fractions, in response to lactobionate additions. We also saw a marginal increase in total soil C in the lactobionate-amended soils. Our findings therefore suggest that the application of lactobionate to soils may induce positive priming of the faster cycling LF-POM and WEOM fractions, but also concurrent gains in the H-POM and MAOM C fractions associated with long-term persistence and relative resiliency to disturbance with no net loss of total soil carbon. Thus, the application of low-molecular weight C-based materials such as lactobionate presents an avenue to building more persistent SOM through its impacts on the internal cycling and transformation of SOM fractions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call